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 Optical Signal-to-Noise Ratio and the Q-Factor in
Fiber-Optic Communication Systems

1 Introduction

The ratio of signal power to noise power at the
receiver of a fiber-optic communication system has a
direct impact on the system performance. Many
electrical engineers are familiar with signal-to-noise
ratio (SNR) concepts when referring to electrical
signal and noise powers, but have less familiarity
with the equivalent optical signal and noise powers.
The purpose of this application note is to show the
relationship between the electrical and optical
signal-to-noise ratio (SNR), and then introduce the
Q-factor.

While the principles outlined in this application note
may be applied to many types of systems, the scope
of the discussion is limited to binary digital
communications over optical fiber. Within this
scope, there are only two possible symbols that can
be transmitted, where these symbols represent a
binary one or a binary zero. Thus, the symbol rate
and the bit rate are equivalent.

2 Signal Power

The power in an arbitrary electrical waveform can be
defined as the voltage multiplied by the current,
which is written mathematically as:

     )()()( titvtPE = (1)

Using ohm’s law, we can substitute v(t) = i(t)R, or
alternately i(t) = v(t)/R, into equation (1) to get:

     RtiRtvtPE )(/)()( 22 == (2)

where R = voltage/current is the resistance in ohms.
In binary digital communications, the signal is
limited to two discrete levels.  Based on this, we can
represent the electrical signal power at any given
time by either:
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where SE represents electrical signal power and the
subscripts L and H represent the low or high power,
voltage, or current levels associated with a binary
zero or one respectively.

Now we will repeat the above derivations for the
case of optical signals using electromagnetic vector
notation. Using this notation, the power in an optical
signal can be defined as the magnitude of the vector
cross product of the electric and magnetic fields,
which can be written and simplified as follows:
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where the notation | X | represents the magnitude of

X, and ε
µη =  is the optical impedance of the

fiber (µ = permeability and ε = permittivity).
Recognizing that there are only two discrete power
levels leads to the optical equivalent of equation (3),
i.e.,
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where SO represents optical signal power and the
subscripts L and H represent the low and high power
or low and high electric field strengths associated
with a binary zero or one respectively.

3 Noise Power

Noise can be defined as any unwanted or interfering
“signal” other than the one that is intended or
expected. The various types of noise and their
sources are beyond the scope of this application
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note. For purposes of illustration we will model the
noise power as random, normally distributed, zero
mean, and additive (the most common type of
noise).

The random nature of the noise means that the
instantaneous value of the noise amplitude is
unpredictable. Thus, instead of classifying the noise
in terms of its actual value at any given time, we use
statistical averages and probabilities. We will
classify the noise amplitude in terms of its root-
mean-square (rms) average, which is commonly
given the symbol σ. The noise power is similarly
expressed in terms of its mean-square average
(equivalent to the statistical variance), which is
given the symbol σ2. In general, the noises
associated with the high and low signal levels in
binary optical digital communications each have a
different value.

The mean-square average electrical and optical noise
powers can be computed mathematically using the
following equations:
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where N is the noise power, T is the integration
period, σ2 is the mean-square average power, and the
subscript N signifies that the associated current,
voltage or electric field is classified as noise.

4 Signal Plus Noise

Addition of the signal and noise amplitudes versus
addition of the signal and noise powers can
sometimes cause mathematical confusion. For
example, if the combined signal and noise amplitude
is written as )()( iHiti σ+= , then the power would

seemingly be RiRti iH
22 )()( σ+= , which, when

multiplied out, is equal to Rii iiHH )2( 22 σσ ++ .
But, addition of the results of equations (3) and (6)

gives SE + NE = Ri iH )( 22 σ+ . So, why is there a
difference in the two results?

The answer lies in the fact that when we add the
signal (a constant) and the noise (an average value),
we compute the result as an average. (We don’t need
to know the value of the signal plus noise at every
instant of time–we only care about the average
value.) In the average, the cross term iHi σ2  is equal
to zero. The reason for this is that the probability
density function (pdf) of the noise was defined as
zero mean and normally distributed. Since this pdf is
symmetric about the mean, multiplication by a
constant will not change the mean, which will
remain zero, i.e., in the average, the result will
always be zero.

5 Signal-to-Noise Ratio (SNR)

Knowledge of the ratio of the signal power to the
noise power (signal-to-noise ratio or SNR) is
important because it is directly related to the bit
error ratio (BER) in digital communication systems,
and the BER is a major indicator of the quality of the
overall system.

Drawing from the results of the preceding sections,
we can mathematically express the electrical SNR as
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Similarly, the optical SNR is
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In practice, optical powers are rarely measured
directly. Instead, the optical power is converted to a
proportional electric current using a device such as a
PIN photodiode, and then the current is measured.
The ratio between the output current and the incident
optical power is called the responsivity
(mathematically represented using the symbol R ),
which has the units of Amperes per Watt (A/W). It is
important to note that the conversion between
optical power (units of Watts) and electrical current
(units of Amperes) essentially results in a square
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root operation. In other words, as we recall from
equation (2), electrical power is related to the square
of the voltage or current, and, as we recall from
equation (5) optical power is related to the square of
the magnitude of the electric field. The result is that
the conversion between optical signal or noise

power, (So or No – both related to | E
r

|2 ) and
electrical current results in what is essentially a
square root relationship, i.e.,

     osignal Si = R   and onoise Ni = R            (10)

Also, the optical SNR, when converted to an
electrical SNR, is equal to the square root of the
equivalent electrical SNR. This is illustrated
mathematically by combining equations (8) and (10)
as follows:
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6 The Q-Factor

As discussed previously, there are only two possible
signal levels in binary digital communication
systems and each of these signal levels may have a
different average noise associated with it. This
means that there are essentially two discrete signal-
to-noise ratios, which are associated with the two
possible signal levels. In order to calculate the
overall probability of bit error, we must account for
both of the signal-to-noise ratios. In this section we
will show that the two SNRs can be combined into a
single quantity – providing a convenient measure of
overall system quality – called the Q-factor.

In the following discussion, we will assume the
signals are electrical voltages, but, as demonstrated
in the previous sections, the concepts can easily be
extended to electrical current signals or optical
signals.

To begin this discussion, we consider the decision
circuit in a fiber-optic receiver, which simply
compares the sampled voltage, v(t), to a reference
value, γ, called the decision threshold. If v(t) is
greater than γ, it indicates that a binary one was sent,
whereas if v(t) is less than γ, it indicates that  a
binary zero was sent. Assuming perfect
synchronization between the bit stream and the bit

clock, the major obstacle to making the correct
decision is noise added to the received data.

If we assume that additive white Gaussian noise
(AWGN) is the dominant cause of erroneous
decisions, then we can calculate the statistical
probability of making such a decision. The
probability density function for v(t) with AWGN can
be written mathematically using the Gaussian
probability density function (pdf) as follows:
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where vS is the voltage sent by the transmitter (the
mean value of the density function), v(t) is the
sampled voltage value in the receiver at time t, and σ
is the standard deviation of the noise. Equation (12)
is illustrated in Figure 2.

If we assume that vS can
levels, which we will 
probability of making an
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Figure 2.  AWGN probab

 Figure 1. Block-diagram of a fiber-optic receiver
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     P[ε] = P[v(t) > γ | vS = vL] P[vS = vL] +

                       P[v(t) < γ | vS = vH] P[vS = vH]      (13)

where P[ε] is the probability of error and P[x | y]
represents the conditional probability of x given y. If
we  further assume an equal probability of sending
vL versus vH (50% mark density), then P[vS = vL] =
P[vS = vH] = 0.5. Using this assumption, equation
(13) can be reduced to:

     P[ε] = P[v(t) > γ | vS = vL] × 0.5

                        + P[v(t) < γ | vS = vH] × 0.5
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where PROB[v(t),σx] is defined in equation (12).
This result is illustrated in Figure 3.

From Figure 3 and equations (13) and (14) we can
conclude that the probability of error is equal to the
area under the tails of the density functions that
extend beyond the threshold, γ. This area, and thus
the bit error ratio (BER), is determined by two
factors: (1) the standard deviations of the noise (σL

and σH) and (2) the voltage difference between vL

and vH.

It is important to note that for the special case when
σL = σH, the threshold is halfway between the low
and high levels (i.e., γ = (vH−vL)/2). But, for the
more general case when σL ≠ σH, the optimum
threshold for minimum BER will be higher or lower
than (vH−vL)/2.

In order to solve equation (14) we need a practical
way to compute the result of the integrated Gaussian
pdf ( PROB[v(t),σx] ) that is defined in equation
(12). Since there is no known closed form solution
to this integral, it must be evaluated numerically. To
maintain compatibility with existing numerical
solutions, equation (12) can be re-written in its
equivalent standardized (zero mean and standard
deviation of one) form. In order to convert to the
standardized form, we use the well known z = (x –
µ)/σ substitution, where x = v(t) and µ = vS in
equation (12). For example, we start with
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              (from equations (12) and (14) )

and then, substituting 
σ

µ−= x
z  (so that

µσ −= zx and dzdx σ= ) results in:

Figure 3. Probability of error for binary signaling
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(Note that there are a number of variations of this
function published in the literature.) The error
function gives the area under the tail of the Gaussian
pdf (mean = vS and standard deviation = σx) between
v(t) and infinity. This form of the error function is
useful because numerical solutions are available in
both tabulated form1 and as built-in functions within
many software utilities (e.g., Er(x) = 1-
NORMSDIST(x) in Microsoft Excel). In terms of
Er(z), equation (14) can be rewritten as2:
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It is interesting to note that the arguments of the
error functions in equation (16) represent the square
root of the signal power divided by the square root
of the noise power, which, we recall from equation
(11), is equivalent to the optical signal-to-noise ratio.
Thus, equation (16) can be rewritten as follows:
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where SNROH  and SNROL are the optical SNRs for
the high and low levels.

The optimum threshold level, γopt, is defined as the
threshold level that results in the lowest probability
of bit error. Further, setting the optimum threshold
level also results in the same probability of bit error
when a high signal is transmitted as when a low
signal is transmitted. This means that for the special
condition of γopt, SNROH  = SNROL, which leads to the
following definition of the Q-factor3:
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By substituting the definition of Q from equation
(18) into equation (16) we find that, when γ = γopt
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Next, we solve equation (18) for γopt to get
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and then substitute this expression for γopt back into
equation (18) to get
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It should be noted that multiplying the individual
terms in equation (21) by resistance, impedance, or
responsivity will convert the expression for Q to
equivalent terms of current or optical power, i.e.,
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Finally, we can substitute equation (21) into the
result from equation (19) to get
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7 Conclusions

The Q-factor defined in equations (18) and (21)
represents the optical signal-to-noise ratio for a
binary optical communication system. It combines
the separate SNRs associated with the high and low
levels into overall system SNR. The form of the Q-
factor given in equation (21) simplifies both the
measurement of SNR and the calculation of the
theoretical BER due to additive random noise.

For example, measurement of the Q-factor can be
performed with the vertical histogram function on
many communications oscilloscopes. This can be
done by displaying a portion of the data pattern and
alternately applying the vertical histogram to the
high (one) level and the low (zero) level. The
oscilloscope histogram function will estimate the
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mean (vH or vL) and the standard deviation (σH or
σL), which can then be used directly to compute the
Q-factor.

The Q-factor is also useful as an intuitive figure of
merit that is directly tied to the BER. For example,
the BER can be improved by either (1) increasing
the difference between the high and low levels in the
numerator of the Q-factor, or (2) decreasing the
noise terms in the denominator of the Q-factor.

Finally, the Q-factor allows simplified analysis of
system performance. The most direct measure of
system performance is the BER, but calculation of
the BER requires evaluation of the cumulative
normal distribution integral. Since this integral has
no closed form solution, evaluation requires

numerical integration or the use of tabulated values.
A much simpler method of analyzing system
performance is to optimize the Q-factor, knowing
that this will result in optimized BER.
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